Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
1.
Acta Neuropathol ; 147(1): 73, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641715

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Amyotrophic Lateral Sclerosis , C9orf72 Protein , Cerebellum , Frontotemporal Lobar Degeneration , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cerebellum/pathology , DNA Repeat Expansion/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression Profiling , Transcriptome
2.
Nat Neurosci ; 27(4): 643-655, 2024 Apr.
Article En | MEDLINE | ID: mdl-38424324

Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-ß1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-ß1 followed by COL6A1. Knockdown of TGF-ß1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-ß1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Animals , Humans , Mice , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/metabolism , Transforming Growth Factor beta1 , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Drosophila , Extracellular Matrix/metabolism , Dipeptides/metabolism , DNA Repeat Expansion/genetics
4.
Neurol Genet ; 9(4): e200077, 2023 Aug.
Article En | MEDLINE | ID: mdl-37346932

Background and Objectives: Amyotrophic lateral sclerosis (ALS) is a degenerative condition of the brain and spinal cord in which protein-coding variants in known ALS disease genes explain a minority of sporadic cases. There is a growing interest in the role of noncoding structural variants (SVs) as ALS risk variants or genetic modifiers of ALS phenotype. In small European samples, specific short SV alleles in noncoding regulatory regions of SCAF4, SQSTM1, and STMN2 have been reported to be associated with ALS, and several groups have investigated the possible role of SMN1/SMN2 gene copy numbers in ALS susceptibility and clinical severity. Methods: Using short-read whole genome sequencing (WGS) data, we investigated putative ALS-susceptibility SCAF4 (3'UTR poly-T repeat), SQSTM1 (intron 5 AAAC insertion), and STMN2 (intron 3 CA repeat) alleles in African ancestry patients with ALS and described the architecture of the SMN1/SMN2 gene region. South African cases with ALS (n = 114) were compared with ancestry-matched controls (n = 150), 1000 Genomes Project samples (n = 2,336), and H3Africa Genotyping Chip Project samples (n = 347). Results: There was no association with previously reported SCAF4 poly-T repeat, SQSTM1 AAAC insertion, and long STMN2 CA alleles with ALS risk in South Africans (p > 0.2). Similarly, SMN1 and SMN2 gene copy numbers did not differ between South Africans with ALS and matched population controls (p > 0.9). Notably, 20% of the African samples in this study had no SMN2 gene copies, which is a higher frequency than that reported in Europeans (approximately 7%). Discussion: We did not replicate the reported association of SCAF4, SQSTM1, and STMN2 short SVs with ALS in a small South African sample. In addition, we found no link between SMN1 and SMN2 copy numbers and susceptibility to ALS in this South African sample, which is similar to the conclusion of a recent meta-analysis of European studies. However, the SMN gene region findings in Africans replicate previous results from East and West Africa and highlight the importance of including diverse population groups in disease gene discovery efforts. The clinically relevant differences in the SMN gene architecture between African and non-African populations may affect the effectiveness of targeted SMN2 gene therapy for related diseases such as spinal muscular atrophy.

5.
Article En | MEDLINE | ID: mdl-36896705

Objective: In 2021, the Clinical Genome Resource (ClinGen) amyotrophic lateral sclerosis (ALS) spectrum disorders Gene Curation Expert Panel (GCEP) was established to evaluate the strength of evidence for genes previously reported to be associated with ALS. Through this endeavor, we will provide standardized guidance to laboratories on which genes should be included in clinical genetic testing panels for ALS. In this manuscript, we aimed to assess the heterogeneity in the current global landscape of clinical genetic testing for ALS. Methods: We reviewed the National Institutes of Health (NIH) Genetic Testing Registry (GTR) and members of the ALS GCEP to source frequently used testing panels and compare the genes included on the tests. Results: 14 clinical panels specific to ALS from 14 laboratories covered 4 to 54 genes. All panels report on ANG, SOD1, TARDBP, and VAPB; 50% included or offered the option of including C9orf72 hexanucleotide repeat expansion (HRE) analysis. Of the 91 genes included in at least one of the panels, 40 (44.0%) were included on only a single panel. We could not find a direct link to ALS in the literature for 14 (15.4%) included genes. Conclusions: The variability across the surveyed clinical genetic panels is concerning due to the possibility of reduced diagnostic yields in clinical practice and risk of a missed diagnoses for patients. Our results highlight the necessity for consensus regarding the appropriateness of gene inclusions in clinical genetic ALS tests to improve its application for patients living with ALS and their families.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Mutation , Genetic Testing/methods , C9orf72 Protein/genetics
6.
Mol Neurodegener ; 18(1): 4, 2023 01 13.
Article En | MEDLINE | ID: mdl-36635726

Amyotrophic lateral sclerosis (ALS) is caused by upper and lower motor neuron loss and has a fairly rapid disease progression, leading to fatality in an average of 2-5 years after symptom onset. Numerous genes have been implicated in this disease; however, many cases remain unexplained. Several technologies are being used to identify regions of interest and investigate candidate genes. Initial approaches to detect ALS genes include, among others, linkage analysis, Sanger sequencing, and genome-wide association studies. More recently, next-generation sequencing methods, such as whole-exome and whole-genome sequencing, have been introduced. While those methods have been particularly useful in discovering new ALS-linked genes, methodological advances are becoming increasingly important, especially given the complex genetics of ALS. Novel sequencing technologies, like long-read sequencing, are beginning to be used to uncover the contribution of repeat expansions and other types of structural variation, which may help explain missing heritability in ALS. In this review, we discuss how popular and/or upcoming methods are being used to discover ALS genes, highlighting emerging long-read sequencing platforms and their role in aiding our understanding of this challenging disease.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/diagnosis , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing
7.
Ann Neurol ; 93(4): 830-843, 2023 04.
Article En | MEDLINE | ID: mdl-36546684

OBJECTIVE: Recent evidence supports a link between increased TDP-43 burden and the presence of an APOE4 gene allele in Alzheimer's disease (AD); however, it is difficult to conclude the direct effect of APOE on TDP-43 pathology due to the presence of mixed AD pathologies. The goal of this study is to address how APOE isoforms impact TDP-43 pathology and related neurodegeneration in the absence of typical AD pathologies. METHODS: We overexpressed human TDP-43 via viral transduction in humanized APOE2, APOE3, APOE4 mice, and murine Apoe-knockout (Apoe-KO) mice. Behavior tests were performed across ages. Animals were harvested at 11 months of age and TDP-43 overexpression-related neurodegeneration and gliosis were assessed. To further address the human relevance, we analyzed the association of APOE with TDP-43 pathology in 160 postmortem brains from autopsy-confirmed amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) in the Mayo Clinic Brain Bank. RESULTS: We found that TDP-43 overexpression induced motor function deficits, neuronal loss, and gliosis in the motor cortex, especially in APOE2 mice, with much milder or absent effects in APOE3, APOE4, or Apoe-KO mice. In the motor cortex of the ALS and FTLD-MND postmortem human brains, we found that the APOE2 allele was associated with more severe TDP-43-positive dystrophic neurites. INTERPRETATION: Our data suggest a genotype-specific effect of APOE on TDP-43 proteinopathy and neurodegeneration in the absence of AD pathology, with the strongest association seen with APOE2. ANN NEUROL 2023;93:830-843.


Alzheimer Disease , Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Motor Neuron Disease , Humans , Animals , Mice , Amyotrophic Lateral Sclerosis/genetics , Apolipoprotein E2/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoprotein E3 , Gliosis/genetics , DNA-Binding Proteins/genetics , Apolipoproteins E/genetics , Frontotemporal Lobar Degeneration/pathology
8.
Sci Transl Med ; 14(662): eabq3215, 2022 09 14.
Article En | MEDLINE | ID: mdl-36103513

Arginine-rich dipeptide repeat proteins (R-DPRs), abnormal translational products of a GGGGCC hexanucleotide repeat expansion in C9ORF72, play a critical role in C9ORF72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the most common genetic form of the disorders (c9ALS/FTD). R-DPRs form liquid condensates in vitro, induce stress granule formation in cultured cells, aggregate, and sometimes coaggregate with TDP-43 in postmortem tissue from patients with c9ALS/FTD. However, how these processes are regulated is unclear. Here, we show that loss of poly(ADP-ribose) (PAR) suppresses neurodegeneration in c9ALS/FTD fly models and neurons differentiated from patient-derived induced pluripotent stem cells. Mechanistically, PAR induces R-DPR condensation and promotes R-DPR-induced stress granule formation and TDP-43 aggregation. Moreover, PAR associates with insoluble R-DPR and TDP-43 in postmortem tissue from patients. These findings identified PAR as a promoter of R-DPR toxicity and thus a potential target for treating c9ALS/FTD.


Frontotemporal Dementia , Arginine , C9orf72 Protein/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dipeptides/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans , Poly Adenosine Diphosphate Ribose
9.
Neurol Genet ; 8(1): e654, 2022 Feb.
Article En | MEDLINE | ID: mdl-35047667

BACKGROUND AND OBJECTIVES: To perform the first screen of 44 amyotrophic lateral sclerosis (ALS) genes in a cohort of African genetic ancestry individuals with ALS using whole-genome sequencing (WGS) data. METHODS: One hundred three consecutive cases with probable/definite ALS (using the revised El Escorial criteria), and self-categorized as African genetic ancestry, underwent WGS using various Illumina platforms. As population controls, 238 samples from various African WGS data sets were included. Our analysis was restricted to 44 ALS genes, which were curated for rare sequence variants and classified according to the American College of Medical Genetics guidelines as likely benign, uncertain significance, likely pathogenic, or pathogenic variants. RESULTS: Thirteen percent of 103 ALS cases harbored pathogenic variants; 5 different SOD1 variants (N87S, G94D, I114T, L145S, and L145F) in 5 individuals (5%, 1 familial case), pathogenic C9orf72 repeat expansions in 7 individuals (7%, 1 familial case) and a likely pathogenic ANXA11 (G38R) variant in 1 individual. Thirty individuals (29%) harbored ≥1 variant of uncertain significance; 10 of these variants had limited pathogenic evidence, although this was insufficient to permit confident classification as pathogenic. DISCUSSION: Our findings show that known ALS genes can be expected to identify a genetic cause of disease in >11% of sporadic ALS cases of African genetic ancestry. Similar to European cohorts, the 2 most frequent genes harboring pathogenic variants in this population group are C9orf72 and SOD1.

10.
Brain ; 145(7): 2472-2485, 2022 07 29.
Article En | MEDLINE | ID: mdl-34918030

Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a complex heterogeneous neurodegenerative disorder for which mechanisms are poorly understood. To explore transcriptional changes underlying FTLD-TDP, we performed RNA-sequencing on 66 genetically unexplained FTLD-TDP patients, 24 FTLD-TDP patients with GRN mutations and 24 control participants. Using principal component analysis, hierarchical clustering, differential expression and coexpression network analyses, we showed that GRN mutation carriers and FTLD-TDP-A patients without a known mutation shared a common transcriptional signature that is independent of GRN loss-of-function. After combining both groups, differential expression as compared to the control group and coexpression analyses revealed alteration of processes related to immune response, synaptic transmission, RNA metabolism, angiogenesis and vesicle-mediated transport. Deconvolution of the data highlighted strong cellular alterations that were similar in FTLD-TDP-A and GRN mutation carriers with NSF as a potentially important player in both groups. We propose several potentially druggable pathways such as the GABAergic, GDNF and sphingolipid pathways. Our findings underline new disease mechanisms and strongly suggest that affected pathways in GRN mutation carriers extend beyond GRN and contribute to genetically unexplained forms of FTLD-TDP-A.


Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Progranulins , Brain/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mutation , Progranulins/genetics , Progranulins/metabolism , Transcriptome
11.
Brain ; 144(4): 1082-1088, 2021 05 07.
Article En | MEDLINE | ID: mdl-33889947

To examine the length of a hexanucleotide expansion in C9orf72, which represents the most frequent genetic cause of frontotemporal lobar degeneration and motor neuron disease, we employed a targeted amplification-free long-read sequencing technology: No-Amp sequencing. In our cross-sectional study, we assessed cerebellar tissue from 28 well-characterized C9orf72 expansion carriers. We obtained 3507 on-target circular consensus sequencing reads, of which 814 bridged the C9orf72 repeat expansion (23%). Importantly, we observed a significant correlation between expansion sizes obtained using No-Amp sequencing and Southern blotting (P = 5.0 × 10-4). Interestingly, we also detected a significant survival advantage for individuals with smaller expansions (P = 0.004). Additionally, we uncovered that smaller expansions were significantly associated with higher levels of C9orf72 transcripts containing intron 1b (P = 0.003), poly(GP) proteins (P = 1.3 × 10- 5), and poly(GA) proteins (P = 0.005). Thorough examination of the composition of the expansion revealed that its GC content was extremely high (median: 100%) and that it was mainly composed of GGGGCC repeats (median: 96%), suggesting that expanded C9orf72 repeats are quite pure. Taken together, our findings demonstrate that No-Amp sequencing is a powerful tool that enables the discovery of relevant clinicopathological associations, highlighting the important role played by the cerebellar size of the expanded repeat in C9orf72-linked diseases.


C9orf72 Protein/genetics , Neurodegenerative Diseases/genetics , Sequence Analysis, DNA/methods , Aged , Cerebellum/metabolism , Cross-Sectional Studies , DNA Repeat Expansion/genetics , Female , Humans , Male , Middle Aged
12.
Sci Adv ; 7(15)2021 04.
Article En | MEDLINE | ID: mdl-33837088

A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we show using patient stem cell-derived motor neurons that the repeat expansion impairs microtubule-based transport, a process critical for neuronal survival. Cargo transport defects are recapitulated by treating neurons from healthy individuals with proline-arginine and glycine-arginine dipeptide repeats (DPRs) produced from the repeat expansion. Both arginine-rich DPRs similarly inhibit axonal trafficking in adult Drosophila neurons in vivo. Physical interaction studies demonstrate that arginine-rich DPRs associate with motor complexes and the unstructured tubulin tails of microtubules. Single-molecule imaging reveals that microtubule-bound arginine-rich DPRs directly impede translocation of purified dynein and kinesin-1 motor complexes. Collectively, our study implicates inhibitory interactions of arginine-rich DPRs with axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to potential therapeutic strategies.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Animals , Arginine/genetics , Axonal Transport , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion , Dipeptides/pharmacology , Drosophila/genetics , Frontotemporal Dementia/genetics , Humans , Microtubules/metabolism , Motor Neurons/metabolism
13.
J Neurol Neurosurg Psychiatry ; 92(5): 502-509, 2021 05.
Article En | MEDLINE | ID: mdl-33452054

Since the discovery of the C9orf72 repeat expansion as the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis, it has increasingly been associated with a wider spectrum of phenotypes, including other types of dementia, movement disorders, psychiatric symptoms and slowly progressive FTD. Prompt recognition of patients with C9orf72-associated diseases is essential in light of upcoming clinical trials. The striking clinical heterogeneity associated with C9orf72 repeat expansions remains largely unexplained. In contrast to other repeat expansion disorders, evidence for an effect of repeat length on phenotype is inconclusive. Patients with C9orf72-associated diseases typically have very long repeat expansions, containing hundreds to thousands of GGGGCC-repeats, but smaller expansions might also have clinical significance. The exact threshold at which repeat expansions lead to neurodegeneration is unknown, and discordant cut-offs between laboratories pose a challenge for genetic counselling. Accurate and large-scale measurement of repeat expansions has been severely hindered by technical difficulties in sizing long expansions and by variable repeat lengths across and within tissues. Novel long-read sequencing approaches have produced promising results and open up avenues to further investigate this enthralling repeat expansion, elucidating whether its length, purity, and methylation pattern might modulate clinical features of C9orf72-related diseases.


Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Amyotrophic Lateral Sclerosis/diagnosis , DNA Methylation , Frontotemporal Dementia/diagnosis , Humans , Phenotype
14.
Sci Transl Med ; 12(566)2020 10 21.
Article En | MEDLINE | ID: mdl-33087504

Spinocerebellar ataxia type 3 (SCA3), caused by a CAG repeat expansion in the ataxin-3 gene (ATXN3), is characterized by neuronal polyglutamine (polyQ) ATXN3 protein aggregates. Although there is no cure for SCA3, gene-silencing approaches to reduce toxic polyQ ATXN3 showed promise in preclinical models. However, a major limitation in translating putative treatments for this rare disease to the clinic is the lack of pharmacodynamic markers for use in clinical trials. Here, we developed an immunoassay that readily detects polyQ ATXN3 proteins in human biological fluids and discriminates patients with SCA3 from healthy controls and individuals with other ataxias. We show that polyQ ATXN3 serves as a marker of target engagement in human fibroblasts, which may bode well for its use in clinical trials. Last, we identified a single-nucleotide polymorphism that strongly associates with the expanded allele, thus providing an exciting drug target to abrogate detrimental events initiated by mutant ATXN3. Gene-silencing strategies for several repeat diseases are well under way, and our results are expected to improve clinical trial preparedness for SCA3 therapies.


Machado-Joseph Disease , Alleles , Ataxin-3/genetics , Humans , Machado-Joseph Disease/genetics , Neurons , Repressor Proteins/genetics
15.
J Clin Invest ; 130(11): 6080-6092, 2020 11 02.
Article En | MEDLINE | ID: mdl-32790644

No treatment for frontotemporal dementia (FTD), the second most common type of early-onset dementia, is available, but therapeutics are being investigated to target the 2 main proteins associated with FTD pathological subtypes: TDP-43 (FTLD-TDP) and tau (FTLD-tau). Testing potential therapies in clinical trials is hampered by our inability to distinguish between patients with FTLD-TDP and FTLD-tau. Therefore, we evaluated truncated stathmin-2 (STMN2) as a proxy of TDP-43 pathology, given the reports that TDP-43 dysfunction causes truncated STMN2 accumulation. Truncated STMN2 accumulated in human induced pluripotent stem cell-derived neurons depleted of TDP-43, but not in those with pathogenic TARDBP mutations in the absence of TDP-43 aggregation or loss of nuclear protein. In RNA-Seq analyses of human brain samples from the NYGC ALS cohort, truncated STMN2 RNA was confined to tissues and disease subtypes marked by TDP-43 inclusions. Last, we validated that truncated STMN2 RNA was elevated in the frontal cortex of a cohort of patients with FTLD-TDP but not in controls or patients with progressive supranuclear palsy, a type of FTLD-tau. Further, in patients with FTLD-TDP, we observed significant associations of truncated STMN2 RNA with phosphorylated TDP-43 levels and an earlier age of disease onset. Overall, our data uncovered truncated STMN2 as a marker for TDP-43 dysfunction in FTD.


DNA-Binding Proteins/metabolism , Frontal Lobe/metabolism , Frontotemporal Dementia/metabolism , Induced Pluripotent Stem Cells/metabolism , Stathmin/metabolism , Biomarkers/metabolism , DNA-Binding Proteins/genetics , Female , Frontal Lobe/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Humans , Induced Pluripotent Stem Cells/pathology , Male , Middle Aged , Mutation , Stathmin/genetics
16.
Mol Neurodegener ; 15(1): 7, 2020 01 30.
Article En | MEDLINE | ID: mdl-32000838

BACKGROUND: A repeat expansion in the C9orf72-SMCR8 complex subunit (C9orf72) is the most common genetic cause of two debilitating neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Currently, much remains unknown about which variables may modify these diseases. We sought to investigate associations between C9orf72 promoter methylation, RNA expression levels, and repeat length, their potential effects on disease features, as well as changes over time and within families. METHODS: All samples were obtained through the ALS Center at Mayo Clinic Florida. Our primary cohort included 75 unrelated patients with an expanded C9orf72 repeat, 33 patients who did not possess this expansion, and 20 control subjects without neurodegenerative diseases. Additionally, 67 members from 17 independent C9orf72 families were selected of whom 33 harbored this expansion. Longitudinally collected samples were available for 35 C9orf72 expansion carriers. To increase our understanding of C9orf72-related diseases, we performed quantitative methylation-sensitive restriction enzyme-based assays, digital molecular barcoding, quantitative real-time PCR, and Southern blotting. RESULTS: In our primary cohort, higher methylation levels were observed in patients with a C9orf72 repeat expansion than in patients without this expansion (p = 1.7e-13) or in control subjects (p = 3.3e-07). Moreover, we discovered that an increase in methylation levels was associated with a decrease in total C9orf72 transcript levels (p = 5.5e-05). These findings aligned with our observation that C9orf72 expansion carriers had lower expression levels of total C9orf72 transcripts than patients lacking this expansion (p = 3.7e-07) or control subjects (p = 9.1e-05). We also detected an elevation of transcripts containing intron 1a (upstream of the repeat) in patients carrying a C9orf72 repeat expansion compared to (disease) controls (p ≤ 0.01), an indication of abortive transcripts and/or a switch in transcription start site usage. While methylation and expression levels were relatively stable over time, fluctuations were seen in repeat length. Interestingly, contractions occurred frequently in parent-offspring transmissions (> 50%), especially in paternal transmissions. Furthermore, smaller repeat lengths were detected in currently unaffected individuals than in affected individuals (p = 8.9e-04) and they were associated with an earlier age at collection (p = 0.008). CONCLUSIONS: In blood from C9orf72 expansion carriers, we found elevated methylation levels, reduced expression levels, and unstable expansions that tend to contract in successive generations, arguing against anticipation.


Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Aged , Cohort Studies , DNA Methylation/genetics , DNA Repeat Expansion , Female , Heterozygote , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics
17.
Alzheimers Dement ; 16(1): 118-130, 2020 01.
Article En | MEDLINE | ID: mdl-31914217

INTRODUCTION: The Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS) consortia are two closely connected studies, involving multiple North American centers that evaluate both sporadic and familial frontotemporal dementia (FTD) participants and study longitudinal changes. METHODS: We screened the major dementia-associated genes in 302 sporadic and 390 familial (symptomatic or at-risk) participants enrolled in these studies. RESULTS: Among the sporadic patients, 16 (5.3%) carried chromosome 9 open reading frame 72 (C9orf72), microtubule-associated protein tau (MAPT), and progranulin (GRN) pathogenic variants, whereas in the familial series we identified 207 carriers from 146 families. Of interest, one patient was found to carry a homozygous C9orf72 expansion, while another carried both a C9orf72 expansion and a GRN pathogenic variant. We also identified likely pathogenic variants in the TAR DNA binding protein (TARDBP), presenilin 1 (PSEN1), and valosin containing protein (VCP) genes, and a subset of variants of unknown significance in other rare FTD genes. DISCUSSION: Our study reports the genetic characterization of a large FTD series and supports an unbiased sequencing screen, irrespective of clinical presentation or family history.


Frontotemporal Dementia/genetics , Genetic Predisposition to Disease , Genetic Testing , C9orf72 Protein/genetics , Female , Humans , Male , Middle Aged , Progranulins/genetics , tau Proteins/genetics
18.
Acta Neuropathol Commun ; 7(1): 150, 2019 10 08.
Article En | MEDLINE | ID: mdl-31594549

The majority of the clinico-pathological variability observed in patients harboring a repeat expansion in the C9orf72-SMCR8 complex subunit (C9orf72) remains unexplained. This expansion, which represents the most common genetic cause of frontotemporal lobar degeneration (FTLD) and motor neuron disease (MND), results in a loss of C9orf72 expression and the generation of RNA foci and dipeptide repeat (DPR) proteins. The C9orf72 protein itself plays a role in vesicular transport, serving as a guanine nucleotide exchange factor that regulates GTPases. To further elucidate the mechanisms underlying C9orf72-related diseases and to identify potential disease modifiers, we performed an extensive RNA sequencing study. We included individuals for whom frontal cortex tissue was available: FTLD and FTLD/MND patients with (n = 34) or without (n = 44) an expanded C9orf72 repeat as well as control subjects (n = 24). In total, 6706 genes were differentially expressed between these groups (false discovery rate [FDR] < 0.05). The top gene was C9orf72 (FDR = 1.41E-14), which was roughly two-fold lower in C9orf72 expansion carriers than in (disease) controls. Co-expression analysis revealed groups of correlated genes (modules) that were enriched for processes such as protein folding, RNA splicing, synaptic signaling, metabolism, and Golgi vesicle transport. Within our cohort of C9orf72 expansion carriers, machine learning uncovered interesting candidates associated with clinico-pathological features, including age at onset (vascular endothelial growth factor A [VEGFA]), C9orf72 expansion size (cyclin dependent kinase like 1 [CDKL1]), DPR protein levels (eukaryotic elongation factor 2 kinase [EEF2K]), and survival after onset (small G protein signaling modulator 3 [SGSM3]). Given the fact that we detected a module involved in vesicular transport in addition to a GTPase activator (SGSM3) as a potential modifier, our findings seem to suggest that the presence of a C9orf72 repeat expansion might hamper vesicular transport and that genes affecting this process may modify the phenotype of C9orf72-linked diseases.


C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion/physiology , Gene Regulatory Networks/physiology , Heterozygote , Transcriptome/physiology , Aged , Aged, 80 and over , Female , Frontal Lobe/metabolism , Frontal Lobe/pathology , Humans , Male , Middle Aged , Protein Transport/physiology
19.
Ann Clin Transl Neurol ; 6(9): 1782-1796, 2019 09.
Article En | MEDLINE | ID: mdl-31448566

OBJECTIVE: To identify clinicopathological differences between frontotemporal lobar degeneration (FTLD) due to mutations in progranulin (FTLD-GRN) and chromosome 9 open reading frame 72 (FTLD-C9ORF72). METHODS: We performed quantitative neuropathologic comparison of 17 FTLD-C9ORF72 and 15 FTLD-GRN with a focus on microglia. For clinical comparisons, only cases with high quality medical documentation and concurring diagnoses by at least two neurologists were included (14 FTLD-GRN and 13 FTLD-C9ORF72). Neuropathological analyses were limited to TDP-43 Type A to assure consistent assessment between the groups, acknowledging that Type A is a minority of C9ORF72 patients. Furthermore, only cases with sufficient tissue from all regions were studied (11 FTLD-GRN and 11 FTLD-C9ORF72). FTLD cases were also compared to age- and sex-matched normal controls. Immunohistochemistry was performed for pTDP-43, IBA-1, CD68, and GFAP. Morphological characterization of microglia was performed in sections of cortex blinded to clinical and genetic information. RESULTS: FTLD-GRN patients had frequent asymmetric clinical features, including aphasia and apraxia, as well as more asymmetric cortical atrophy. Neuropathologically, FTLD-C9ORF72 had greater hippocampal tau pathology and more TDP-43 neuronal cytoplasmic inclusions. FTLD-GRN had more neocortical microvacuolation, as well as more IBA-1-positive ameboid microglia in superficial cortical layers and in subcortical white matter. FTLD-GRN also had more microglia with nuclear condensation, possibly indicating apoptosis. Microglial morphology with CD68 immunohistochemistry in FTLD-GRN and FTLD-C9ORF72 differed from controls. INTERPRETATION: Our findings underscore differences in microglial response in FTLD-C9ORF72 and FTLD-GRN as shown by significant differences in ameboid microglia in gray and white matter. These results suggest the differential contribution of microglial dysfunction in FTLD-GRN and FTLD-C9ORF72 and suggest that clinical, neuroimaging and pathologic differences could in part be related to differences in microglia response.


Brain/pathology , C9orf72 Protein/genetics , Frontotemporal Lobar Degeneration/pathology , Microglia/pathology , Mutation , Progranulins/genetics , Aged , Aged, 80 and over , Brain/metabolism , Female , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Humans , Male , Microglia/metabolism , Middle Aged , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , tau Proteins/metabolism
20.
Acta Neuropathol ; 137(6): 879-899, 2019 06.
Article En | MEDLINE | ID: mdl-30739198

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e - 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e - 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e - 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.


Nerve Tissue Proteins/genetics , TDP-43 Proteinopathies/genetics , Aged , DNA Repeat Expansion , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Female , Frontal Lobe/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/immunology , Genetic Predisposition to Disease , Genome-Wide Association Study , HLA-DQ Antigens/genetics , Humans , Intracellular Signaling Peptides and Proteins , Loss of Function Mutation , Male , Middle Aged , Nerve Tissue Proteins/physiology , Potassium Channels/genetics , Progranulins/genetics , Progranulins/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/physiology , Proteins/genetics , Proteins/physiology , RNA, Messenger/biosynthesis , Risk Factors , Sequence Analysis, RNA , Societies, Scientific , TDP-43 Proteinopathies/immunology , White People/genetics
...